《共识》发布至今已过去5年时间,期间,各种临床常用心血管无创影像技术又有了较大的新进展,包括但不限于新技术的发明,临床转化以及临床普及程度提升。总体而言,这些进展可以概况为以下几个共性方面:首先,是对自身短板的补强,比如CT低剂量技术,CMR成像速度提升,三维超声技术进展,以及PET和SPECT的低剂量、快速显像等;其次,是对自身应用领域的拓展,比如CT Perfusion和CT FFR进入到功能领域,超声造影技术对图像质量的提升和血流定量功能的实现,CMR面向三维心脏的首次通过血流定量,PET和SPECT在心肌功能分子影像——如心肌神经、心肌血管生成、心肌纤维化——等方面的进展等;第三,是对精确定量的追求,包括血流灌注绝对定量以及运动应变量化成像等;最后,是积极拥抱AI与大数据技术,在成像性能、图像分析和诊断预后方面的提升。对于稳定性冠心病,如《共识》所述,应基于验前概率和病人具体情况,开展有创或无创影像检查,观察心肌缺血变化为主要目的。近年来,随着冠心病精准诊疗水平的提升,作者认为,在《共识》基础上,临床对无创影像检查技术提出了更高的要求,包括:精确量化心肌缺血的程度,明确鉴别导致缺血的原因,准确量化评估因缺血造成心肌损害的范围和性质,有效提示预后风险。图23:心肌缺血疾病典型发展过程中各种影像技术的应用参考图3所述心肌缺血疾病典型发展过程中各个阶段的特征,以及上文对各种新技术进展的讨论,作者认为,最直接、精确量化心肌缺血程度的技术是负荷+静息心肌血流绝对定量灌注显像,与其它缺血评估技术和传统的灌注显像相比,灵敏度更高,量化水平更高,对临床更具备指导意义。心肌代谢与运动的影像检查可以作为针对特定患者群体进行心肌缺血评估的补充技术。在明确并量化缺血后,需要对缺血的原因进行鉴别,比如是冠脉粥样硬化、微循环病变,亦或是心脏瓣膜或心肌相关疾病,还是血液疾病等,这里的鉴别同样需要功能性、量化的影像检查,特别是在血管解剖形态特征不典型、不明确的条件下。明确或排除缺血原因之后,进一步行临床治疗之前,还应该对心肌生理或功能损害程度与性质进行针对性的检查,比如心肌存活,心肌代谢,心肌纤维化、冬眠心肌等等,因为这将直接影响相关治疗方案的优化选择以及患者的预后。当然,无创检查结果具体如何被采信并辅助心血管疾病的诊疗,还需要依赖医生结合其他相关信息进行综合的权衡和把握。冠心病或心肌缺血疾病的无创检查技术,不仅可以用于患者的临床诊断和辅助治疗,也可以应用于高危人群的筛查,特别是隐匿性冠心病的筛查,这对于冠心病的早诊早治和治愈率改善,具有非常重要的意义。以上为作者的一家之言,抛砖引玉,意在引发大家关注讨论,欢迎批评指正。参考文献[1] 中华医学会心血管病学分会, 心血管病影像学组, 稳定性冠心病无创影像检查路径的专家共识写作组. 中国介入心脏病学杂志. 2017,25(10):541-549[2] 方理刚,朱文玲,“超声心动图技术评价心功能进展”,北京协和医院,学术交流报告[3] 王之龙,“超声心动图新技术、新进展”,中山大学附属第八医院,学术交流报告[4] Heseltine TD, Murray SW, Ruzsics B, Fisher M. Latest Advances in Cardiac CT. Eur Cardiol. 2020 Feb 26;15:1-7.[5] Dell'Aversana S, Ascione R, De Giorgi M, De Lucia DR, Cuocolo R, Boccalatte M, Sibilio G, Napolitano G, Muscogiuri G, Sironi S, Di Costanzo G, Cavaglià E, Imbriaco M, Ponsiglione A. Dual-Energy CT of the Heart: A Review. J Imaging. 2022 Sep 1;8(9):236.[6] Dewey M, Siebes M, Kachelrieß M, Kofoed KF, Maurovich-Horvat P, Nikolaou K, Bai W, Kofler A, Manka R, Kozerke S, Chiribiri A, Schaeffter T, Michallek F, Bengel F, Nekolla S, Knaapen P, Lubberink M, Senior R, Tang MX, Piek JJ, van de Hoef T, Martens J, Schreiber L; Quantitative Cardiac Imaging Study Group. Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia. Nat Rev Cardiol. 2020 Jul;17(7):427-450.[7] Nagueh SF, Quiñones MA. Important advances in technology: echocardiography. Methodist Debakey Cardiovasc J. 2014 Jul-Sep;10(3):146-51.[8] Akkus, Z., Aly, Y. H., Attia, I. Z., Lopez-Jimenez, F., Arruda-Olson, A. M., Pellikka, P. A., Pislaru, S. V., Kane, G. C., Friedman, P. A., & Oh, J. K. (2021). Artificial intelligence (ai)-empowered echocardiography interpretation: A state-of-the-art review. Journal of Clinical Medicine, 10(7)[9]https://consultqd.clevelandclinic.org/cardiac-mri-7-new-and-emerging-developments-to-be-aware-of/#menu[10] 宋宇,郭应坤,许华燕,等.磁共振定量成像技术评估心肌组织的研究进展[J].磁共振成像,2021,12(11):109-112,121
[11] Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D, Neubauer S. Recent Advances in Cardiovascular Magnetic Resonance: Techniques and Applications. Circ Cardiovasc Imaging. 2017 Jun[12] Sogbein OO, Pelletier-Galarneau M, Schindler TH, Wei L, Wells RG, Ruddy TD. New SPECT and PET radiopharmaceuticals for imaging cardiovascular disease. Biomed Res Int. 2014;2014:942960[13] Klein R, Celiker-Guler E, Rotstein BH, deKemp RA. PET and SPECT Tracers for Myocardial Perfusion Imaging. Semin Nucl Med. 2020 May;50(3):208-218.[14] Matheoud, R., Lecchi, M. Time-of-flight in cardiac PET/TC: What do we know and what we should know?. J. Nucl. Cardiol. 25, 1550–1553 (2018).[15] H. Sun, L. Peng, H. Zhang, Y. He, S. Cao and L. Lu, "Dynamic PET Image Denoising Using Deep Image Prior Combined With Regularization by Denoising," in IEEE Access, vol. 9, pp. 52378-52392, 2021[16] Wang G, Qi J. Direct estimation of kinetic parametric images for dynamic PET. Theranostics. 2013 Nov 20;3(10):802-15.[17] CHC2022:心肌纤维化分子显像大有可为, https://circ.cmt.com.cn/detail/1457078.html[18] Hsu B, Chen FC, Wu TC, Huang WS, Hou PN, Chen CC, Hung GU. Quantitation of myocardial blood flow and myocardial flow reserve with 99mTc-sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease. Eur J Nucl Med Mol Imaging. 2014 Dec;41(12):2294-306.[19] Wang L, Zheng Y, Zhang J, Wang M, Wu D, Wang Y, Qiu H, Hsu B, Fang W. Diagnostic value of quantitative myocardial blood flow assessment by NaI(Tl) SPECT in detecting significant stenosis: a prospective, multi-center study. J Nucl Cardiol. 2022 Aug 15. doi: 10.1007/s12350-022-03085-3. Epub ahead of print.[20] Westcott RJ, Tcheng JE. Artificial Intelligence and Machine Learning in Cardiology. JACC Cardiovasc Interv. 2019 ; 22;12(14):1312-1314.[21] Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial Intelligence in Cardiology. J Am Coll Cardiol. 2018 ;12;71(23):2668-2679.